Regressão de Vetor Suporte
Categories: Machine Learning
Eai meu povo, tudo bem?
Aqui vai o código usado nos videos abaixo com intuição sobre Maquina e Regressão de Vetor Suporte e a implementação da Regressão em python.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 24 22:55:59 2021
@author: rafaeldontalgoncalez
"""
######################################
# Importando as bibliotecas
######################################
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
######################################
# Importa o dataset
######################################
dataset = pd.read_csv('Posicao_Salario.csv')
X = dataset.iloc.values.reshape(-1,1)
y = dataset.iloc.values.reshape(-1,1)
######################################
# Feature Scalling
######################################
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
######################################
# Treinando o modelo para SVR
######################################
regressor = SVR(kernel='rbf')
regressor.fit(X,y)
######################################
# Imprime a regressao SVR
######################################
plt.scatter(X, y, color = 'red')
plt.plot(X, regressor.predict(X), color = 'blue')
plt.title('Regressao SVR')
plt.xlabel('Nivel')
plt.ylabel('Salario')
plt.show()
######################################
# Prevendo resultados para regressao de vetor suporte
######################################
sc_y.inverse_transform(regressor.predict(sc_X.transform(])))
https://youtu.be/bZ8ZUcV2b20
https://youtu.be/FBw11uU0yXE